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Abstraet. Colour-extended solutions of YBE associated with G = E., C,, and D,, are derived 
and the coloured Birman-Wed algebra (cs-WA) is established. We point out that the 
CB-WA still satisfiestheredundance conditions ofMurakami [l]. for non-standard solution, 
we take the non-trivial colour-solution of D, as an example. We find that the colour- 
constraints induce a new solution with q*= 1, the implication of this is not clear to us at 
the present. 

1. Introduction 

Recently, solutions ofthe coloured Yang-Baxterequations (YBE) and the corresponding 
link polynomials have attracted much attention [l-51. As an extension, a coloured 
braid group representation (CBGR) satisfies the equations 

&(A, p ) k 3 ( A ,  v)d,,(p, v)= k d p ,  Y ) R I ~ A ,  ~ ) k d A ,  p )  (1.1) 

where A, p and Y stand for colour-parameters. The simplest example is 4 by 4 solutions 
for which two types of solution have been obtained, namely a standard solution [6] 

and non-standard solution 

where X(A) ,  g(A), Y ( F )  are arbitrary colour-dependent parameters and W(A, p )  
satisfies the relation 

W(A, p)  W ( p ,  V )  Iq - q - ‘ X ( p )  Y ( p ) }  W(A, v). (1.4) 

Note that (1.3) contains Marakami’s solution [l, 21 as a special case. 
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Obviously, equation (1.2) is the colour-extension of the usual standard 4 by 4 
solution associated with SU(2), whereas (1.3) is the colour-extension of the correspond- 
ing non-standard solution [7,8]. However, it turns out that both of them satisfy thc 
quantum double of Drinfeld [9] and 7 and g(A) are related to gauge transformations. 
From the point of view of representation of quantum algebra, (1.2) is related to the 
case where 4 is generic, whilst (1.3) is for 4 being a root of unity 13, IO]. However, 
for CBGR associated with the fundamental representations of G =  B,, On, C,, the 
situation is not so clear because the explicit form of the quantum double for G is very 
di5cult to write down. If we follow the strategy of [3, lo] to discuss the problem then 
the q-boson realization theory of quantum algebra and the explicit R-operator forms 
for G are complicated and unsatisfactory. 

In this paper we construct explicit forms of the standard solutions of equation (1.1) 
for G and their coloured Birman-Wend algebraic (CB-WA) structure, the latter being 
the colour-extension of the usual Birman-Wenzl algebra (E-WA). The 'redundance' 
property of B-WA proved in [l, 191 will also be extended to the CE-WA, that is, the 
CE-WA still obeys the Murakami redundance conditions [I]. For the non-standard 
solution of (1.1) we shall give an example associated with non-trivial BGR of D2, but 
it tums out to be a completely different picture from SUJ2). 

2. Coloured standard BGR for G 

Let G be the fundamental representations of B., C. and D.; the E(A, p)  associated 
with G can be written in the form 

(E(& p))z i= %(A, P)&bd +P(4h)(A, P ) & d ~ h c l o + h  

where 
labels a, b, c, d, above assume the following values 

= 1 for a = b = c = d, 0 otherwise, and 8.h = 1 for a = b, 0 otherwise. The 

[ -(?), -(?) + 1,. . . , (31 
( N = 2 n + l  for B,, N = 2 n  for C. and D.). 

Obviously, the k(A, p)  has the same matrix structure form as the kmatrix without 
colour for G[11]. The only difference is that all the four unknown parameters U,(& p),  
p'"h'(A, p), q('.')(A, p )  and w".~'(A, p)  are now colour-dependent, where A and p 
stand for colours. 

On substituting (2.1) into (l.l), we can find relations satisfied by the unknown 
parameters of (2.1). The computation is elementary but tedious and is similar to those 
performed in [ I l l .  Omitting the details, we give the final results. Generally, we have 
( w  = 4-4-11 



In the above, Xe(A)s are arbitrary colour-dependent parameters and X,(A)X-.(A) is 
independent of the index a. 

By taking A = p the above solutions are reduced to the known BGRS given by Jimbo 
[12]. For the non-coloured case it is known that the BGR for G leads to B-WA 113,141. 
To construct the coloured B-WA, new matrices are introduced 

I ( A , p ) =  X,(A)Xh'(p)e,,@% (2.8) 
0. h 

where (eoh)cd = Socijhd, and 

E ( A , p ) = m - ' I R ( A ,  p ) + k - ' ( p , A ) } - I ( A , p )  

M =i(q-q- ' )  =iw. 

Defining 

&(A, p)  = I O .  . .Q I O  I(A, p)Q I O .  . . 
I, i+l 

E,(& p )  = I O .  . .@I  O E ( A ,  p) O I 0. . . 
i. i+l  

4 i + l  
bj(A, p)  = I O .  . .O I O  R ( A ,  p)Q IO..  . 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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for B. 
for C, 

q-2"+i for D. 
(2.20) 

and from the above relations, we derive the following relations for CB-WA 
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b, (A ,p)z / ,  , ( A ,  v )b , (p ,  v) 

{m(b;(A, p)+[-'Ei(A, PI}+ p)I;,.I(A, v)Z,(p, v) (2.30) 

b ; + i ( ~ ,  v)Zi (A,  p)b;+,(A, 

=Im(bi+,(pL,  ~ ) + l - ' E ~ + ~ ( p ,  v)}+Zj+I(~, v)l ,(A, v)Zj+,(A, p). (2.31) 
Equations (2.13)-(2.31) define the coloured B-WA (CB-WA) which will be useful in the 
Yang-Baxterization of CBGR for G [14,151. Note that when A = p =  v, the CB-WA 

reduces to the B-WA. 

3. Link polynomials related to CBWA 

As pointed out in [16, 171, there exists a new type of link polynomial other than the 
Jones-Kauffman link polynomial [18]. This new kind of link polynomial was coined 
by Lee and Kauffman the Alexander-Conway link polynomial [16]. We have found 
that some non-standard BGRS associated with C,, and D,, (which are not diagonalizable) 
lead to the Alexander-Conway link polynomials (ACLP) [14,19]. In [l], Murakami 
presented the sufficient conditons under which ACLP can be constructed, namely, if 
the enhanced Yang-Baxter operators Y related to BGR satisfy the redundancy condi- 
tions then ACLP can be obtained in a similar way to that in deriving the Jones-Kauffman 
link polynomials. Furthermore, it was pointed out that any Y related to B-WA does 
definitely satisfy the redundancy conditions [19]. This is because for any B-WA the 
diagrammatic relation of figure 1 holds. In figure 1, B,, stands for a block formed by 

{Z, b:, b f  ,..,., b,;'} 

that will be closed to form a knot or link and 

f i , , = { 6 , , ~ , , l ~ , , = m - ' ( ~ , + ~ ~ ' ) - z }  
with b, (6, without colour) being the braiding between the ith and ( i + l ) t h  strings. 

Figure 1 can be written in the form 

rs,,, = B#z- ,  + B,?-, fi>& ~, . (3.1) 

In [19] we have shown that any B-WA for which (3.1) holds leads to the satisfaction 
of the redundancy conditions. Now we shall show that the same statement holds also 
for CB-WA. 

El . . .  

Figure 1. Illustration of equation (3.1). 
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Statement. If b. obey CB-WA then we have 

B. =B._, + B,_,A,B._, (3.2) 

where E, stands for a coloured braiding block formed by { I ( A , p ) ,  
b:'(A, EL).. . . , b?(A, EL)}  and 

A.  = { M A ,  EL)UEL, A), b&, dL(EL3 A)}. (3.3) 

It is emphasized that the braid block E, in (3.2) should be closed to form a coloured 
knot or link. Diagrammatically (3.2) can be illustrated as in figure 2,  where the role 
of In(p ,  A) is to interchange the colours A and p so that the graph can form a coloured 
knot or link. To prove (3.2) we first prove the following lemma. 

+ + 

n n+l 

Figure 2. Illustration of equation (3.2) 

Lemmn. If a coloured BGR obeys CB-WA then for any open braiding block E:, (not 
necessarily closed to form a knot or link) the following relation holds: 

Bh= B'.-,+BL-lC,,Bb-, (3.4) 

{b.(A, EL), .%(A, EL), L(A, EL), &(A, EL)G(EL, A), h ( A ,  EL)G(EL, A)}. (3.5) 

1 n b9EPI;(E,I,)d(b,I,)'€B:, (3.6) 

where C. represents elements of the set 

Proof: First we note that any braiding block can be formed by 

{at i L 1  

for CB-WA where 

{a> = {a,  b, c, 4 4 = IO, 1) 
and 

{ h } - { i , j , k , l , m } = { 1 , 2  ,..., n-1). 

Equation (3.6) can easily be verified by using definitions of E,(& p )  and I,(p, A )  and 
the CB-WA structure; the latter guarantees the set {a} runs over {0, l}  only. 
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Next we show that any element C; of the coloured set formed from (3.5) satisfies 
the relation 

CG+, c; = c,+, c;ci+, . (3.7) 
Equation (3.7) can be verified by exhausting all of the possibilities. For instance, in 
LHS of (3.7) one of the possibilities can be formally expressed by 

(3.8) 

(3.11) 

A'@, U) AY+i(A, ~ ) I ; + I ( u ,  A) AY(*,@) 

For instance making use of CB-WA relations and after some catculation, we have 

A:(@, ~){A.!:+l(h, u ) I ~ + ~ ( u ,  A)}AY(A,  p ) = A L i ( A ,  p)IA;(*, v )I , (v ,  *))AY+i(p, U) (3.12) 

which coincides with (3.7). In a similar manner, we exhaust all the possibilities in the 
LHS and RHS of (3.7) to show its validity by using the relations of CB-WA. 
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With the help of (3.7), we can literally repeat all the arguments made in [19] for 
the non-coloured B-WA to prove the coloured extension (3.4). To save space we omit 
the details and give only a graphic illustration. 

A part of the proof can be illustrated diagrammatically by assuming (3.4) is true 
for n and then showing its validity for n + 1 through induction. For n = 2, equation 
(3.4) is simply (3.7) itself. For any n, we assume that (3.4) is valid. Because, for any 
braiding block Bh, there should be 

8; = ++= ,I ..E.?, 
... 

.. . 
Figure 3. 

where both BL and B:: belong to same braiding block formed by ( I ,  b, ,  b; ' ,  . . . , b:'). 
Following the Markov properties [13], this becomes 

Figure 4 

where the dotted block represents the B: in figure 3. 
Assuming (3.4) is valid for n - 1 the non-trivial part of figure 4 has the form 

j-?T . . .  

Figure 5 
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then because of (3.7) we obtain 

n-1 n r 

I I I  

I 

B' C 8' 1 = " - 1  n " - 1  

, .. , . [ , I  ~~ 

K . 2  

, ........... .... 
. . .  

I l l  Figure 6 

(3.13) 

where the fact that the dotted blocks in the LHS belong to BL-, has been used. 
If the considered braiding blocks are closed to form a knot or link then (3.4) gives 

(3.2) with (3.3). This is because only strings with the same colours can be closed. It 
is natural to have equation (3.4) since CB-WA preserves the basic algebraic structure 
as B-WA. The only difference is that all strings are coloured and entangled by &(A, p),  
bj(A, p)  and Ej(A,  p).  When the algebra is extended to take colours into account, there 
is no essential change in the topology. 

On the basis of (3.4), we can follow Murakami [l J to find Alexander-Conway link 

(3.14) 

trn+,{ b,(h, p)I& A)(-@ If)} = k'I@" (3.15) 

where k and k' are constants and the trace tr,+, is taken for the ( n  + 1)th space only; 
then when 

" 

t r H = O  

trh'#O 

this leads to redundancy, ire. to ACLP 

this leads to the usual coloured Jones-Kauffinan link 
polynomials. 

4. Non-standard &A, p )  for D2 

The general coloured extension of non-standard R(h,  p )  for G is tremendously compli- 
cated because the calculation is strongly model-dependent. 
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In order to make comparison between equations (1.2) and (1.31, we take D2 as an 
example. As pointed out in [14,201, a non-trivial q-solution of BGR for D2 can be 
obtained by solving braid relations. The classical Lie algebra D2=SU(2)@SU(2) is 
decomposable. After 'q-deformation' the representations for SU(2) can be taken to be 
either standard or non-standard, namely, there exist four trivial possibilities. However, 
it turns out that there is a fifth q-solution which is neither decomposable nor diagonaliz- 
able. The non-trivial non-standard BGR for D2 possesses the form [14,20] 

d,= blockdiag(A,, A2, A3, 4, A,, AI, A,) 

1 9 -1  - iw -iw zw 1 
Here, we emphasize that for SU(2) case the non-standard solutions are related to the 
representations of quantum algebra SU,(2) for q at root of unity [3, lo]. What we are 
concerned with is whether the non-standard solution for D2 possesses also the same 
property; the answer, as we shall see, is no. The condition leading to q being a root 
of unity comes from another source different from the SU(2) case. To see this point 
let us first solve (1.1) for D2. 

The calculation follows the same strategy as in deriving (4.1) but with the extension 
that all of the matrix forms for the solution are perserved and the unknown parameters 
are dependent on colours A and p. By labelling the R ( A ,  p )  matrix for D2 in terms of 

(4.2) 
the general form of R(A,p )  for D2 is as given by (2.1). Without confusion in this 
section, we still use the notations of section (2) for D2. 

Substituting (4.1) into (l . l) ,  and after tedious calculations (see appendix), we derive 
the following form of solutions for D2 

1 1 3  a, b, c, d E [-+, -?,I, 51 

R ( A ,  p )  =block diag(A7, Ai, AJ, A:, A:, A:, A:} (4.3) 

A:'=q A:=qX+(A)X-(A) Y+(p)Y-b ) .  

A; = 

A;= 0 -q- 'X+(A)Y+(p)  0 

I X+(N ] A;.=[  0 X+(A)X-(A) Y-(cL) [ Y+:/L) A+(A)B+(p) X-(A) Y+(EL) Y - h )  AL(A)B'(P) 

(4.4) 1 0 

1 0 X-(PL) 

Y-(P) 0 A - ( A ) B - ( d  

0 0 X+(A)X-(A) Y + h )  
-qX-(N YAP) 

[ O  

[ O  X-(A) Y+(P) Y-(P) 0 A & W L ( d  

1 0 0 q-'X+(A)X-(P) 
0 -qX-(A) Y+(P) iX-(A) YI'(P)A+(A)BL(P) 

-@+(A) Y - h )  0 iX+(A) K ' ( P ) A - ( A ) B W )  

A;' = 

L M w(-3/2.3/2)(~, P )  

A; = 
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where 

L= iY+(IL)X_'(A)A'(A)B+(g) M=iX;'(A) Y+(g)A!+(A)B-(g) 

(A, I*.) 
~ ( - 3 / 2 . 3 / 2 1  

= x-(gL)(AF(~L))-'B-(pL)IX;'(A.)X+(p) Y+(pL)AXh)A+(A) 

+XI ' (A)AF(A)A_(A) }  (4.5) 
and +si, -=--I for the subscripts of matrix elements in (4.4)-(4.5). 

To satisfy (1.1) the parameters appearing in (4.4) and (4.5) admit the following 

(1) q can be an arbitrary complex number (generic) and 
two types of solutions 

Y. = X,' A.(A)B.(A) =Ab(h)Bb(h)= W =  (9 - s-') (4.6) 
where U = *  and repeated indices are not summed. In (4.6), q, Y, ,  A, and A_L are 
free parameters. 

(2) q 4 = 1 a n d f o r u = i  

X+(A)Y+(A)=X-(A)Y-(A)# 1 

Ab(A)Bb(A)=X+(A) Y+(h)IqX+(A)Y+(h)-S-'} (4.7) 

A,(A)B,(A)=Iq-q-'X+(A) Y+(A)}. 

Obviously solution (4.6) is the straightforward colour extension of the non-standard 
solution (4.1) since when A = p (by taking X = Y = 1 and A: = -A=,  B ,  1 - _  - B T ) ,  it 
reduces to the usual non-standard solution (4.1). 

The solution (4.7) is much more interesting because it is not simply the coloured 
extension of (4.1), but is due to the consequence of the colour-dependent constraints. 
To satisfy ( l . l ) ,  the stringent colour-dependent constraints require the parameter q to 
be a root of unity. This phenomenon has never been encountered before. Let us recall 
the SU,(2) case. As pointed out in [3,10], the non-standard coloured solutions of 
d ( h ,  p) associated with SU(2) are related to representations of quantum algebra SU,(2) 
for q a root of unity (in previous work [lo, 161 it is expressed by U, u N  = l), whereas 
the colours A and p are additional parameters allowed by the quantum double [3,10]. 
In other words, for Su,(2) the colour 'degree' is a separated one, for example, the 
minus sign appearing before q- 'X(A)  Y ( p )  in (1.3) just stands for the 0(=-.1) in the 
theory [3,5,10]. Therefore in the non-standard solutions for SU(2) the behaviour of 
q at the root of unity is independent of any colour-constraints. However the picture 
of q at the root of unity associated with D2 comes purely from the colour-constraints. 
This phenomena is quite new. 

Since the general R-operator theory for G given by Ross0 et ul [21] is in the 
abstract form we could not make comparison between the solution and quantum 
algebra. We hope that it can be interpreted in terms of the present quantum double 
theory and look for more general solutions for R ( A ,  p) with qp  = 1 being constrained 
by colours. 
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from which it follows that there exist two solutions: 

(1) q 4 = 1  X+(A)Y+(A) # 1 (A.13) 

(2) q is generic, but X+(A) Y+(A) = E &2=1. (A.14) 

From 

B:(A)A:(A) = X+(A) Y-(A)A-(A)B+(A) 

BL(A)q'-3'2.-)(A, p )  = iY+(A) Y+(p)A-(A)B_(p)B+(A) 

it follows 

q ( - 3 / 2 . - ) ( ~ ,  p)  =. IX ; ' (A) Y+(P)A:(A)B-(P). (A.15) 

By virtue of the relation 

(A, P )  
( -3 /2 .+)  v)u-3/2(A2 v)q  U I ( - 3 / 2 . - )  (A, p)p'-.*)(A, v ) U I ( - ~ / ~ . + ) ( ~ ,  v )  = q  ( - . - 3 / 2 ) ( p ,  

we get 

q'-.-3/2'(A ,P ) - 1  - 'X+(A) Y;'(p)A-(A)B:(p). (A.16) 

Employing the relation 

(A, P b 3 / 2 ( h ,  U ) q  (CL, v ) + q ( - 3 / 2 . - ) ( ~  ,P )UI(+3/2)  (A, P)P'-,+'(P:, v )  ( - 3 / 2 . + )  w l - 3 / 2 . 3 / 2 )  

(A, U )  W(-,3'2) (A, P )  (A.17) 1-3/2.+1 
= U3/2 (P3  v)q 

and other corresponding relations, we finally arrive at 
~ < 3 / 2 . 3 / 2 ) ( ~  ) ,P 

= X-(~)AL- ' (PL)B-(P){X; I (~)X+(~)  Y+(p)AXA)A+(A) 
+XI'(A)AL(A)A-(A)]. 
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